Inverse spectral problem for quantum graphs

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2006 J. Phys. A: Math. Gen. 39993
(http://iopscience.iop.org/0305-4470/39/4/C01)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.106
The article was downloaded on 03/06/2010 at 04:51

Please note that terms and conditions apply.

## Corrigendum

## Inverse spectral problem for quantum graphs

Pavel Kurasov and Marlena Nowaczyk 2005 J. Phys. A: Math. Gen. 38 4901-4915
The algebraic multiplicity of the eigenvalue $E=0$ calculated in lemma 1 is in fact equal to $N-M+2$. One has to take into account that the sums of the amplitudes of all incoming and outgoing waves for every edge are equal, which gives additional $M-1$ conditions on the amplitudes $a_{j}$. Hence the trace formulas (21) and (22) read as follows:

$$
\begin{align*}
u(k) \equiv \delta(k)+ & \sum_{n=1}^{\infty}\left(\delta\left(k-k_{n}\right)+\delta\left(k+k_{n}\right)\right) \\
& =-(N-M+1) \delta(k)+\frac{\mathcal{L}}{\pi}+\frac{1}{2 \pi} \sum_{p \in \mathcal{P}}\left(\mathcal{A}_{p} \mathrm{e}^{\mathrm{i} k l(p)}+\mathcal{A}_{p}^{*} \mathrm{e}^{-\mathrm{i} k l(p)}\right) \tag{21}
\end{align*}
$$

and

$$
\begin{align*}
\hat{u}(l) \equiv 1+\sum_{n=1}^{\infty} & \left(\mathrm{e}^{-\mathrm{i} k_{n} l}+\mathrm{e}^{\mathrm{i} k_{n} l}\right) \\
& =-(N-M+1)+2 \mathcal{L} \delta(l)+\sum_{p \in \mathcal{P}}\left(\mathcal{A}_{p} \delta(l-l(p))+\mathcal{A}_{p}^{*} \delta(l+l(p))\right) . \tag{22}
\end{align*}
$$

This mistake does not affect the rest of the paper.
doi:10.1088/0305-4470/39/4/C01

